28- Thermoelectric modeling of a cooling module with heat exchangers. J. G. Stockholm, D.W. Stockholm, in proceedings of XI th International Conference on Thermoelectrics, (The University of Texas at Arlington, Arlington Texas 76019, Dept of Electrical Engineering Editor K.R. Rao P.O. Box 19016: p 140-146) Arlington, Texas, USA 7-9 October 1992.

THERMOELECTRIC MODELING OF A COOLING MODULE WITH HEAT EXCHANGERS

John G. Stockholm. Daniel W. Stockholm.

Marvel S.A. 11 rue J. du Bellay, 78540 Vernouillet, France

ABSTRACT

Module manufacturers' brochures give the performances of their modules as a function of the temperatures of the cold and hot sides of the modules and as a function of the electrical current through the module.

The user is concerned with the temperatures in his equipment. He or she knows on the cold side, either a temperature of a surface, or of a fluid and on the hot side generally the temperature of a fluid.

A simple thermal thermoelectric model of a cooling module with a heat exchanger on each side is presented.

The object of this model is to give people who use thermoelectric modules an easy way to know the performances of a module with a heat sink (heat exchanger) that has a known thermal resistance.

An easy way to solve the model with a spreadsheet is presented with two examples: a thermoelectric module on its own and one with a heat sink. The outputs are the cooling, heating and electrical powers, the temperatures at the interfaces of the module are given so that the user can compare the values with those from a module manufacturer.

The symbol * is used as the multiplication sign. The word thermoelectric is abbreviated by TE.

1. THERMAL THERMOELECTRIC MODEL

A schematic of the TE module thermal model is shown in Fig. 1

The thermal thermoelectric mathematical model consists of a thermoelectric module with a heat exchanger on each side. The energy balance consists of 6 equations with 6 unknowns. The equations are presented in paragraph 5 Equations.

The fundamentals of thermoelectric equations are given in ref: 1 We have chosen the signs so that the cooling power and the COP are negative and the heating and electrical powers are positive.

We have chosen for clarity a most simple model, which is sufficient for most applications.

The assumptions for the mathematical model are:

- Each ceramic layer has the same temperature as the faces of T.E elements in contact with them
- All the T.E elements are electrically connected in series and thermally connected in parallel.
- Joule power (Re*i^2) produced in the T.E elements is dissipated equally at the ends of the two T.E elements (Re*i^2)/2. This is correct when the TE material properties are a linear function of temperature, the temperature dependence of the material used has a small term of the second order which is negligible over the ΔT of the TE element.
- The only heat losses outside of the module are expressed as an exterior thermal conductance C_xt, between the cooled base temperature and the heated base temperature. They are represented in Fig. 1 as a seal, which includes a tightening mechanism, such as screws.

Fig. 1 Schematic of TE module - Thermal model

Practical experience has shown that the conduction losses
C_xt between the heated side and the cooled side which
are outside of the thermoelectric material are well
approximated by using the temperature t_Ba of the bases.
The temperature of the base for a liquid heat exchanger is
the temperature of the wall constituting the passage for
the liquid. For a gas it is the average temperature of the
base of the fins, no fins are shown in Fig. 1.

The characteristics of a thermoelectric module and of the heat exchangers are examined.

2. NOTATIONS

The notations used for the variables or parameters are as mnemonic as possible. They are composed of 2 or 3 parts (basic notations) each part is separated by a "_".

t_Ba_Co: t stands for temperature, Ba stands for base and Co stands for cooled

Basic notations: Meaning of the different terms

units	Designation
m ²	Area
m ²	Base of the heat exchanger
W/K	Thermal Conductance
	Ceramic
	Cooled side
non dim.	Coefficient Of Performance
	eLectrical
non dim.	Fin efficiency
	FLuid
m	Geometric Factor of TE
	element
	Heated side
W/(m2*K)	convection coefficient h
Α	Electrical current (intensity)
W/(m*K)	Thermal conductivity k
	Module
	Number
	Power
	Electrical resistivity Rho
	electrical Resistance
1	thermal Resistance
	Seebeck voltage
℃	temperature
	TE element
	Average temperature (mean)
V	Voltage across module
1	exterior
	m ² m ² W/K non dim. non dim. m

Variables:

A_Te	m ²	Area of TE element External thermal Conductance Thermal conductance C of TE
C_xt	W/K	External thermal Conductance
C_Mo	W/K	Thermal conductance C of TE
_		Module
GF	non dim.	Geometric Factor of TE
		element = A_Te/L_Te

1		l
h_Ba_Co	$W/(m^2*K)$	convection coefficient h on
		Base of Cooled side
h_Ba_He	$W/(m^2*K)$	convection coefficient h on
		Base of Heated side
k_Te	W/(m*K)	Thermal conductivity k of TE
		material
L_Te	m	Length of TE material
P_Co	W	Cooling Power
P_eL	W	eLectrical Power
P He	W	Heating Power
Ro_Te	Ω*m	Electrical resistivity Rho of TE
		material
Re_Mo	Ω	electrical Resistance of TE
		Module
S_Te	V/K	Seebeck coefficient of TE
	,,,,,	material
S_Mo	V/K	Seebeck coefficient of TE
0_2.10	7722	Module
t_FL_Co	°C	temperature of the Cooled
		FLuid
	°C	1 20.0
t_FL_He		temperature of the Heated
		FLuid
t_Ba_Co	°C	temperature of the Cooled Base
t_Ba_He	°C	temperature of the Heated Base
t_Ce_Co	°C	temperature of the Cooled
	_	Ceramic
t_Ce_He	°C	temperature of the Heated
i_ce_ne	C	_
		Ceramic
tm_Te	℃	Average temperature of the
j		TE element (mean)

3.THERMOELECTRIC MODULE CHARACTERISATION

voltage across the module

Thermoelectric material is characterised by 3 parameters

Ro_Te Electrical resistivity Ω*m
S_Te Seebeck coefficient V/K
k_Te Thermal conductivity W/(m*K)

These parameters are a function of temperature, generally one uses a polynomial correlation with terms of the second order in temperature. They represent the average values of the n and the p type materials.

The functions used are those given by Melcor Inc. They are given here as a function of (tm -23) so that the first term is the value at room temperature and the second term is the slope of the curve at 23 °C.

Ro_Te (tm)= (10.8497 +0.0535*(tm - 23) + 62.8E - 6*(tm-23)^2) / 10^6 S_Te(tm)= (210.9019 +0.34426*(tm-23) - 0.9904E -3*(tm-23)^2) /10^6 k_Te(tm) = 1.65901 -3.32E-3(tm-23) +41.3E-6(tm-23)^2

A TE module can be characterised by

Re_Mod = Total electrical resistance Ω
S_Mod = Total Seebeck V/K
C_Mod = Thermal conductance W/K
These parameters can be measured directly on a TE mod-

U

eristics will include the thermal properties of the ceramic and the electrical connectors etc. which are inside the nodule. This assumption is equivalent to saying that the emperature of the ceramic is the same as the temperature of the end of the TE element

A thermoelectric module is characterised besides the maerial characteristics by two other parameters:

Vb_Te = number of TE elements in the module

F = the geometric factor of the TE elements

= A_Te/L_Te

One can write for a module

Re_Mo = Nb_Te* Ro_Te/GF S_Mo = Nb_Te*S_Te C_Mo = Nb Te*GF*k Te

4. HEAT EXCHANGER CHARACTERISATION

/e have chosen for the heat exchanger to use thermal sistances for two reasons:

because when they are in series they must be added. when one does not exist the value is zero.

he model requires knowing the thermal resistance of oth heat exchangers. We have divided this thermal resisince into two parts:

here is also the heat conduction C_xt that goes between the heat exchangers but outside the module.

1 Contribution due to convection coefficient

Thermal hydraulic resistances K/W: Rt_Hy_Co and t_Hy_He

t_Hy = 1 / (h_Ba *A_Ba) in K/W where
_Ba area of the base of the heat exchanger on the fluid
de m² and h_Ba convection coefficient as seen by the
ase: W/(m²*K)

or air heat exchangers with fins one can calculate t_Hy in the following way.

ne base has an area of A_Ba, the fins on the base have a area of A_fin and a fin efficiency of fin_eff, the invection coefficient of the fins is h and we can write:

h_Ba = A_fin*fin_eff*h /A_Ba
'e neglect the area of the base between the fins in calcuting the area in contact with the fluid.

For liquid heat exchangers e convection coefficient of the fluid **h_Ba** is at the inface between the fluid and the walls of the duct.

2 the thermal conduction through a solid

Thermal base resistance K/W:

_Ba_Co and Rt_Ba_He

nese values can be calculated (e.g.: by finite differences by finite element analysis) or measured.

thermal resistances is independent of the boundary contions. As these two thermal resistances are a function of a convection coefficient at the level of the base, they are

thermal interface resistance between the base and the ceramic.

The calculations of the above thermal hydraulic resistances and thermal resistances are done prior to using the model.

5. EQUATIONS

5.1. Thermal power that is pumped out of cooled fluid by module

Seebeck power - S_Mo * i * (t_Ce_Co + 273) Joule power + (Re_Mo * i^2)/2 Conduction in T . E + C_Mo * (t_Ce_He - t_Ce_Co) Conduction outside module + C_xt * (t_Ba_He - t_Ba_Co)

$$P_Co = -S_Mo * i * (t_Ce_Co + 273) + (Re_Mo * i^2)/2 + \\ C_Mo * (t_Ce_He - t_Ce_Co) + \\ C_xt * (t_Ba_He - t_Ba_Co)$$

5.2. Thermal power exiting module that is entering the heated fluid

Seebeck power S_Mo * i * (t_Ce_He + 273)

Joule power +(Re_Mo * i^2)/2

Conduction in T.E - C_Mo * (t_Ce_He - t_Ce_Co)

Conduction outside module + C_xt * (t_Ba_He - t_Ba_Co)

5.3 Evaluation of ceramic temperature in contact with Cooled Base

The thermal resistances of heat exchanger and of fluid interface = $Rt_Ba_Co + Rt_Hy_Co$ $t_Ce_Co = t_FL_Co + P_Co * (Rt_Ba_Co + Rt_Hy_Co)$

5.4. Evaluation of ceramic temperature in contact with heated Base.

The thermal resistance of heat exchanger and of fluid interface = Rt_Ba_He + Rt_Hy_He

 $t_Ce_He = t_FL_He + P_He * (Rt_Ba_He + Rt_Hy_He)$

5.5. Evaluation of Base temperature at interface with cooled fluid

$$t_Ba_Co = t_FL_Co + P_Co * Rt Hy Co$$

5.6. Evaluation of Base temperature at interface with heated fluid

 $t_Ba_He = t_FL_He + P_He * Rt_Hy_He$

6. INPUT VARIABLES

The input variables are divided into 4 categories of characteristics: TE element, TE Module, Heat exchanger and Operating conditions

The TE material has 3 properties which are a function of their mean temperature tm Ro_Te(tm) Electrical resistivity Ω^*m S_Te (tm) Seebeck coefficient V/K k_Te (tm) Thermal conductivity W/(tm*K) The functions used are those given in paragraph 3

5.2 TE module characteristics.

There are only two input variables that characterise he module

Nb_Te= Number of TE elements in TE module GF = Geometric factor: (A_Te/L_Te)

5.3 Heat Exchanger Characteristics.

There are 5 variables

?t_Ba_Co = thermal Resistance of Cooled Base

?t_Hy_Co = thermal Hydraulic Resistance of Cooled
fluid

kt_Hy_He = thermal Hydraulic Resistance of Heated
fluid

_xt = External thermal Conductance

.4 Operating Conditions

There are 3 variables:

A Electrical current i

_FL_Co °C temperature of Cooled Fluid out of which heat is pumped

_FL_He °C temperature of Heated Fluid into which heat is dissipated

7. RESOLUTION

We have a system of 6 linear equations etween 6 unknown variables:

 $x1 = P_Co$ $x2 = P_He$ $x3 = t_Ce_Co$

 $x4 = t_Ce_He$

 $x5 = t_Ba_Co$

 $x6 = t_Ba_He$

rranging the 6 equations with respect to the 6 1known variables we have the following system:

$$a62 = - Rt_Hy_He$$
 $b1 = - S_Mo * i * 273 + (Re_Mo * i^2)/2$
 $b2 = + S_Mo * i * 273 + (Re_Mo * i^2)/2$
 $b3 = b5 = t_FL_Co$
 $b4 = b6 = t_FL_He$

all the other terms are equal to zero

There are 11 input variables implied in the matrix: C_Mo, C_xt, i, Re_Mo, Rt_Ba_Co, Rt_Ba_He, Rt_Hy_Co, Rt_Hy_He, S_Mo, t_FL_Co, t_FL_He

The resolution of the classical matrix multiplication

8. SPREADSHEET SOLVING

We have used Excel 4.0 on the Macintosh, it is the same with Excel 4.0 on MS Windows for the PC, but one can use any spreadsheet that has matrix inversion and preferably convergence by iteration.

Advantages of using a spreadsheet: Solving with a spreadsheet is simpler, easier and quicker than writing a program in one of the languages BASIC, C, FORTRAN or Pascal etc.

There are other advantages:

- it is easy to generate data tables with one or two inputs.
- it is easier to develop graphs etc. because the data base for the files exists and it is easy to connect to other programs (import and export)
- compact and easy to read presentation compared to a program, whatever the language

We have chosen to fill in two columns and then 6 columns for the matrix

Column A is for titles. We have chosen the name of the formula in the cell (col. B) to be identical to the name in the cell on the left (col. A).

9. PRESENTATION OF THE WORKSHEET

The worksheet with the equations is given in Appendix 1.

Column A contains the titles and names of the variables, column B contains numerical values or equations.

Lines 1 to 22(col. A and B) contain the System characteristics and the Operating conditions.

Lines 5,6 and 7 are the TE element characteristics as a function of the average temperature tm of the TE element.

Lines 24 to 28 (col. A and B) are **Precalculations** (average temperature of the TE material and the characteristics of the TE module).

corresponding to the set of 6 simultaneous equations. Lines 41 to 47 (col. A and B) are the terms of Vector B Lines 49 to 54 (col. A and B) is the Solution of A.*X=B _ine 56 (col. A and B) is the calculated average temperature of the TE element tm_Te2

Lines 58 to 60 (col. A and B) gives the final output: elecrical power, voltage across the module and COP

10. CALCULATION PROCESS

One inputs all the System characteristics col. B lines to 22

The worksheet has a circular reference formula ine 24: tm_Te = Tm_Te2 which is defined on line 56 ut Excel has the function iteration, which solves this aumatically by iterating. There is the choice of defining ne number of iterations, or of defining the maximum hange between iterations.

We have found that after 3 iterations tm only hanges by a fraction of a degree C so this gives an acuracy of better than 1%. If one fixes the maximum hange between iterations one can choose 0.1 °C. The orksheet accomplishes the 3 iterations within a second r two.

The equations we have used give negative cooling owers and COP. In generating the tables we have ranged their signs.

11. EXAMPLES

We have chosen the Melcor module CP5-31-06, the aterial properties are given in paragraph 3. This odule has 62 elements and the geometric factor GF is jual to 0.012 m. The size of the ceramic is 55*55 mm it this only affects the thermal resistance of the base.

e have examined two cases

1) one of a module without heat exchangers.

2) one of a module with on the cooled side an inface resistance corresponding to thermal grease and on a heated side a heat sink.

he results are presented as 3 dimensional graphs. The is's are in the horizontal plane: the electrical current d the difference in temperature between the hot side 7 °C) and the cold side. The vertical axis is the cooling wer or the COP.

3. 2 is the module alone, the vertical axis is the cooling wer. Fig. 3 gives the COP also for the module alone.

he graphs of Fig. 2 and 3 correspond to the perforances given by the module manufacturer, the ΔT is the mperature difference between the ceramic on the heated de and the ceramic on the cooled side.

g. 4 is cooling power of the module with a heat sink d Fig. 5 the corresponding COP where the ΔT is tween a cooled plate (of no thermal resistance but with small thermal interface resistance between the plate and ϵ cooled ceramic) and heated gas (air) through a heat 1k with a thermal resistance.

Temperature of heated ceramic = $27 \, ^{\circ}\text{C}$ $\Delta T = \text{temp.of heated ceramic} - \text{temp. of cooled ceramic}$

Fig. 2 Cooling power of a Melcor CP5-31-06 module alone versus electrical current and the ΔT across the module

Temperature of heated ceramic = $27 \, ^{\circ}\text{C}$ $\Delta T = \text{temp.}$ of heated ceramic - temp. of cooled ceramic

Fig. 3 COP of a Melcor CP5-31-06 module alone versus electrical current and the ΔT across the module

The spreadsheet calculates the ceramic temperature on the heated side, there is a large temperature difference between the heated side ceramic temperature and the heated fluid temperature, this difference explains the considerable drop in performance. This difference is often underestimated by users of TE modules and this leads to cooling powers well below those of a module on its own.

and example are on the cooled side no hydraulic esistance

 $t_Hy_Co = 0$

It_Ba-Co= 0.13 K/W this corresponds to a thermal rease with an interface resistivity of 0.35 K*cm²/W and 12 Melcor module CP5-31-06 with ceramic size of 55*55 m. On the heated side they correspond to those of a simpact air cooled heat sink

 $t_Ba_He = 0.045$ K/W this corresponds to a base of 0*90*5 mm.

t_Hy_He = 0.25 K/W this is an average value for a comact air heat exchanger with fins and forced convection.

xt = 0.01 K/W this corresponds to the heat losses rough a thermal insulation material with some losses rough screws.

emp. of heated fluid = $27 \, ^{\circ}$ C T = temp. of heated fluid - temp. of cooled plate

g. 4 Cooling power of a Melcor CP5-31-06 module th a heat sink versus electrical current and the ΔT tween the cooled plate and the heated fluid.

We note that the two graphs for the cooling have same shape and the two sets of graphs for the COP ave the same shape but the numerical values are very fferent. What this shows is that for this Melcor module P5-31-06 alone the maximum cooling is obtained with a electrical current of 70 A.

BUT with a compact heat sink the maximum cooling is stained with an electrical current of 30 A. Between this odule alone and this one with a heat sink, the values of oling power and COP are decreased by about 50%. So a user must be careful not to use a current that exceeds a value corresponding to the maximum cooling for a ven heat exchanger. It is important to underline that nen volume is available and one wants to get the aximum cooling from a module, the heat sink must be mensioned in consequence. One can dimension the heat changer so that the maximum cooling is obtained with a crent just below 70 A.

Temp. of heated fluid = $27 \, ^{\circ}\text{C}$ $\Delta T = \text{temp.}$ of heated fluid - temp. of cooled plate

Fig. 5 COP of a Melcor CP5-31-06 module with a heat sink versus electrical current and the ΔT between the cooled plate and the heated fluid.

12. CONCLUSIONS

A simple method using a worksheet to calculate the performances of a thermoelectric module has been presented. The cooling power and the COP of a module alone and those of a module with a heat sink are given as three dimensional graphs as a function of electrical current and the difference in temperature between the heated side and the cooled side. We see for a given module the tremendous influence of the heat sink on the cooling power and the COP.

References:

- 1. Goldsmid H.J. Electronic Refrigeration Pion Ltd. London 1986
- 2. Schlicklin P. M., Stockholm J. G. Thermoelectric module characterisation. 7th International Conference on Thermoelectric Energy Conversion. Arlington Texas March 1988.

Excel is a Registered trademark of Microsoft Corporation

		A	1		В		1	
1	Mathematical M		Thern	noelectric module with hea		*** · · · · · · · · · · · · · · · · · ·		_
2	Version: 10 Se			4.0 worksheet	it excitatigets		:	*******
3	SYSTEM CHARA	CTEDISTICS	LACEI	4.0 Worksheet				-
4	TE element ch		Molec	or SN1				
5	S_Te	aracteristics		0.9019+0.34426*(tm_Te	22) 0 0000004*	/tm T=\00\/1000		-
6	Ro_Te		-(10	8497+0.0535*(tm_Te-2	2) . 0 0000628*/+-	To 02\40\(1000)	200	
7	k_Te	· · · · · · · · · · · · · · · · · · ·	-1 65	5901-0.00332*(tm_Te-2	3)+0.0000028 (II	11_1e-23/12//1000	0000	
	TE module		-1.00	1901-0.00332 (IIII_18-2.	5)+0.0000413 (111	1_1 e-23)^2		· ·
9	Characteristics		CDF	01 007				
	Nb_Te	.	62	31-065				
11	GF		0.012				*	
	Heat Exchange	r	0.012	-				-
	characteristics		·					_
	Rt_Ba_Co		0					
	Rt_Hy_Co		0.013	}			***************************************	
	Rt_Ba_He		0.045	······				
	Rt_Hy_He		0.25					
	C_xt		0.01			75"4117"111"		
	OPERATING CON	NDITIONS	1					
<u>? 0</u>			40					
	t_FL_Co		-3		_			
22	t_FL_He		27		······································			
	PRECALCULATION	ONS						
	tm_Te		=tm_	Гe2				=
25								
26	S_Mo		=Nb_	Ге*S_Te				
	Re_Mo		=Nb	Te*Ro_Te/GF				
	C_Mo		=Nb_	re*k_Te*GF				
9	Α	В	***************************************	C	D	E	F	G
	Calculations	1		,				
	Matrix A.							
32		P_Co		P_He	t_Ce_Co	t_Ce_He	t-Ba_Co	t_Ba_He
32	alj	ai1		al2	al3	al4	ai5	ai6
3 2 3 3 3 4	alj a1j	ai1 1		ai2 0	al3 =S_Mo*i+C_Mo	al4 =-C_Mo	ai5 =C_xt	ai6 = - € - %
32 33 34 35	alj a1j a2j	ai1 1 0		al2 0 1	al3	al4 =-C_Mo =-S_Mo*i+C_Mo	ai5 =C_xt / = ~ C_x}	al6 = - C - × = C_xt
32 33 34 35 36	alj a1j a2j a3j	ai1 1 0 =-Rt_Ba_Co-Rt_Hy	/_Co	al2 0 1	ai3 =S_Mo*i+C_Mo =-C_Mo	al4 =-C_Mo =-S_Mo*i+C_Mo 0	ai5 =C_xt / ≠ ~ C_x h 0	al6 = - C - ★ = C_xt 0
32 33 34 35 36 37	alj a1j a2j a3j a4j	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0	/_Co	ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He	ai3 =S_Mo*i+C_Mo =-C_Mo 1	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / =-C_xh 0 0	al6 =-C-* =C_xt 0 0
32 33 34 35 36 37 38	alj a1j a2j a3j a4j a5j	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	/_Co	ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 38	alj a1j a2j a3j a4j	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0	/_Co	ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He	ai3 =S_Mo*i+C_Mo =-C_Mo 1	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / =-C_xh 0 0	al6 =-C-* =C_xt 0 0
32 33 34 35 36 37 38 39	alj a1j a2j a3j a4j a5j a6j	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	/_Co	ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	= - C - x = C_xt 0 0
32 33 34 35 36 37 38 39 40	alj a1j a2j a3j a4j a5j a6j Vector B.	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co		ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 33 34 35 36 37 38 39 40 41 42	alj a1j a2j a3j a4j a5j a6j Vector B.	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	 =-S_N	al2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 33 34 35 36 37 38 39 40 41 42 43	alj a1j a2j a3j a4j a5j a6j Vector B. b1	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	=-S_N =+S_	al2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 33 34 35 36 37 38 39 40 41 11 42	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	=-S_N =+S_	al2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 38 39 40 41 42 43 44	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	=-S_N =+S_ =t_FL =t_FL	al2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 38 39 40 41 12 43 14	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4	ai1 1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co	=-S_N =+S_ =t_FL =t_FL =t_FL	ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He //o*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 38 39 40 41 11 12 13 14 15	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL	ai2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He //o*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 38 39 40 41 12 43 14 15 16 17	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.*	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL	al2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co _He	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 38 39 40 41 11 12 13 14 15 16 17 18	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =t_FL	al2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co _He _Ct_Minverse(A.),B.)	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 38 39 40 41 42 43 14 15 16 17 18	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MML =MML	a12	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 38 39 40 41 42 43 14 15 16 17 18	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU	a12	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 38 39 40 41 42 43 14 15 16 17 18 19 50 51	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU =MMU	a12	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 38 39 40 41 42 43 14 15 16 17 18 19 50 51	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU =MMU	a12	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 38 39 40 41 42 43 14 15 16 17 18 19 50 51	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He t_Ba_Co	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU =MMU	a12	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0
32 34 35 36 37 40 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He t_Ba_Co	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =t_FL =MMU =MMU =MMU =MMU	aI2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co _He _Ctron_Ltron_Minverse(A.),B.) Ltron_Ltro	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 40 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He t_Ba_Co t_Ba_He tm_Te2	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =t_FL =MMU =MMU =MMU =MMU	a12	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 40 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He t_Ba_Co t_Ba_He	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU =MMU =MMU =MMU	aI2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co _He _Ct_Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.)	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 40 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He t_Ba_Co t_Ba_He tm_Te2 Final output P_eL	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU =MMU =MMU ==(t_C)	aI2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co _He _Ct_Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.)	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt =C_xt 0 0
32 34 35 36 37 38 39 40 41 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	alj a1j a2j a3j a4j a5j a6j Vector B. b1 b2 b3 b4 b5 b6 Solution of A.* P_Co P_He t_Ce_Co t_Ce_He t_Ba_Co t_Ba_He tm_Te2 Final output P_eL	ai1 0 =-Rt_Ba_Co-Rt_Hy 0 =-Rt_Hy_Co 0	=-S_N =+S_ =t_FL =t_FL =t_FL =MMU =MMU =MMU =MMU ==(t_C)	aI2 0 1 0 =-Rt_Ba_He-Rt_Hy_He 0 =-Rt_Hy_He Mo*i*273+(Re_Mo*i^2)/2 Mo*i*273+(Re_Mo*i^2)/2 _Co _He _Co _He _Ct_Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.) LT(Minverse(A.),B.)	ai3 =S_Mo*i+C_Mo =-C_Mo 1 0	al4 =-C_Mo =-S_Mo*i+C_Mo 0 1	ai5 =C_xt / = -C_xF 0 0 1	al6 =-C_xt 0 0 0